

Introduction to Apache NuttX

Eren Terzioğlu

Computer Engineer from Yildiz Technical University. Software engineer at Espressif Systems. Maker, Electronics Hobbyist

/eren-terzioglu

NuttX is a real-time operating system (RTOS) with an emphasis on standards compliance and small footprint. Scalable from 8-bit to 64-bit microcontroller environments, the primary governing standards in NuttX are POSIX and ANSI standards.

Source: <u>Apache NuttX</u>

A **real-time operating system** (**RTOS**) is an operating system (OS) for real-time computing applications that processes data and events that have critically defined time constraints. All operations must verifiably complete within given time and resource constraints or else fail safe. Real-time operating systems are event-driven and preemptive, meaning the OS can monitor the relevant priority of competing tasks, and make changes to the task priority. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts.

Source <u>Real-time operating system - Wikipedia</u>

Operating system	First commit	Governance	License	Contributors	Pulse (jun10/2024)
Zephyr	2014	community	Apache 2.0	100+	942
NuttX	2007	community	Apache 2.0	100+	135
RT-Thread	2009	community	Apache 2.0	100+	67
RIOT	2010	community	LGPL2.1	100+	71
Tyzen RT	2015	Samsung	Apache 2.0	100+	36
myNewt	2015	Community	Apache 2.0	100+	25
mbed OS	2013	ARM	Apache 2.0 or BSD-3 Clause	100+	7
FreeRTOS	2004	Richard Barry	MIT	100+	6
Contiki-NG	2016	community	BSD-3 Clause	100+	4
CMSIS-5	2016	ARM	Apache 2.0	100+	0
Azure-RTOS	2020	Microsoft	Microsoft Software License	10+	archived

NuttX is the 2nd most popular community-based RTOS (along with Zephyr in the 1st position):

Advantages of NuttX

- Apache 2.0 Licensed
- Small footprint
- Variety of architecture support (from Z80 to 64 bit RISC-V)
- Community support
- POSIX compliant

risc-v
sim
sparc
tricore
x86
x86_64
xtensa
z16
z80

Supported architectures on NuttX

The **Portable Operating System Interface** is a family of standards specified by the IEEE Computer Society for maintaining compatibility between operating systems. POSIX defines application programming interfaces (APIs), along with command line shells and utility interfaces, for software compatibility (portability) with variants of Unix and other operating systems. POSIX is also a trademark of the IEEE. POSIX is intended to be used by both application and system developers

- Source POSIX - Wikipedia

Instead of reinventing wheel again, you can reuse previously implemented a POSIX based application with NuttX.

Projects using NuttX

- PX4 autopilot drones.
- Pixhawk an advanced, User-Friendly Autopilot.
- OsmocomBB uses NuttX to develop an operating system for cell phones.
- Haltian's Thingsee IoT gateway devices use the ThingseeOS operating system, which is based on NuttX.
- Motorola Moto Z.
- Sony is using NuttX in their audio processors.
- Sony is using NuttX in the Spresense development board.
- Samsung TizenRT based on NuttX RTOS.
- Xiaomi Vela, an IoT software platform based on NuttX.
- Source NuttX Wikipedia

Supported ESP Chips

RISC-V

- ESP32-C3
- ESP32-C6
- ESP32-H2

Xtensa

- ESP32
- ESP32-S2
- ESP32-S3

Peripheral	Support
ADC	No
AES	No
Bluetooth	Yes
CAN/TWAI	Yes
CDC Console	Yes
DMA	Yes
eFuse	No
GPIO	Yes
I2C	Yes
LED_PWM	Yes
RNG	No
RSA	No
RTC	Yes
SHA	No
SPI	Yes
SPIFLASH	Yes
Timers	Yes
Touch	No
UART	Yes
Watchdog	Yes

Support
0
0
es
es
es
es
0
es
es
es
0
0
es
0
es
es
es
0
es
es
es

Support
No
No
Yes .
Yes .
Yes .
Yes .
No
Yes .
Yes .
Yes
No
No
Yes
No
Yes .
Yes .
Yes .
No
Yes
Yes
Yes

upport	
	ADC
	AES
	Bluet
	CAM
	CAN/
	DMA
	eFus
	GPIC
	I2C
	I2S
	LCD
	LED_
	MCP'
	Pulse
	RMT

tooth	No
IERA	No
/TWAI	Yes
\	Yes
se	No
)	Yes
	No
	Yes
	No
_PWM	No
PWM	Yes
e_CNT	No
-	No

Peripheral

```
No
No
Yes
Yes
No
Yes
No
Yes
No
No
Yes
```

YES

YES

Support

RNG

RSA

RTC

SDIO

SHA

SPI

SD/MMC

SPIFLASH

SPIRAM

Timers

Touch

UART

USB OTG

Watchdog

Wi-Fi

USB SERIAL

No

No

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Wifi

Sample Application on NuttX

nuttx-apps/examples/hello/hello_main.c

```
#include <nuttx/config.h>
#include <stdio.h>
int main(int argc, FAR char *argv[])
  printf("Hello, World!!\n");
  return 0;
```


Sample Application on NuttX

```
# Clean up the working directory
make - j distclean
# Setting up the example
./tools/configure.sh esp32s3-devkit:nsh
# Select the Hello World example
make menuconfig
# Compile and flash the firmware
make flash ESPTOOL_PORT=/dev/ttyUSB0 -j$(nproc)
# Access to terminal
minicom
```

```
help usage: help [-v] [<cmd>]
                                                                 true
                            false
                                        mkfifo
                                                                 uptime
    arp
                            ifconfig
                                                     source
                                         printf
Builtin Apps:
Hello, World!!
```

Build steps

Execute steps

Sample Application on NuttX

nuttx-apps/examples/gpio/gpio_main.c

```
/* Open the pin driver */

fd = open(devpath, 0_RDWR);
if (fd < 0)
   {
    int errcode = errno;
    fprintf(stderr, "ERROR: Failed to open %s: %d\n", devpath, errcode);
    return EXIT_FAILURE;
}</pre>
```


Brief History of ESP and NuttX

October 2016

First commit by Gregory Nutt himself (creator of NuttX), one month after the release of ESP32

October 2021

Espressif officially announces support for NuttX and Zephyr OSes (in addition to ESP-IDF, which remains Espressif's official OS for its SOCs)

November 2024

NuttX supports ESP32, ESP32-S2, ESP32-S3, ESP32-C3, ESP32-C6, and ESP32-H2

Next Steps

- WebAssembly
- elf-loader
- WiFi, Bluetooth, ...

Articles and Updates About NuttX?

- NuttX · Developer Portal
- GitHub apache/nuttx
- GitHub apache/nuttx-apps
- <u>Lup Yuen LEE's Blog</u>

Sources

- https://nuttx.apache.org/
- https://nuttx.apache.org/docs/latest/
- https://developer.espressif.com/blog/nuttx-getting-started/
- https://developer.espressif.com/blog/2024/11/using-wokwi-with-nuttx/
- https://developer.espressif.com/blog/nuttx-adding-porting-an-app/
- https://developer.espressif.com/blog/pytest-testing-with-nuttx/
- https://developer.espressif.com/tags/nuttx/
- https://en.wikipedia.org/wiki/Real-time_operating_system
- https://en.wikipedia.org/wiki/POSIX